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Introduction
Untargeted mass spectrometry (MS)-based metabolomics, the unbiased detection and relative quantitation of 
ideally all metabolites in a biological system, has become a powerful discovery tool in many scientific disci-
plines. The informatics pipeline for making sense of the resulting data involves preprocessing of the raw peak 
data to detect unique chemical species, assignment of specific metabolites to these species, and integration of 
these metabolites into a coherent and physiologically meaningful integrated multi-omics framework that can 
yield a holistic understanding of the biological system (Figure 1A). As the first step of this informatics pipeline, 
data preprocessing (Figure 1B) is critical for the success of the metabolomics study. Data preprocessing gener-
ally consists of three computational steps: peak detection, peak grouping and annotation for LC-MS and spec-
tral deconvolution for GC-MS, and peak alignment. While many existing software tools have performed admi-
rably considering the complex nature of the data, the underlying algorithm in each step of the data preprocess-
ing are being seriously challenged as many more metabolites can now be detected and data has become much 
more complex than before, due to the unpreprecedented sensitivity of the analytical platforms that has been 
made possible by recent technological advances in chromatography and mass spectrometry.
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Peak here refers to a unique pair of mass and retention time (RT) that corresponds to an ion. It is also called a feature, but “peak” is used here to avoid possible confu-
sions because features mean different things for different people. Peak detection is the first step of data preprocessing and is critical for successful extraction of metabo-
lite information from raw LC-MS and GC-MS data. Raw LC-MS and GC-MS data has three dimensions: m/z (mass-to-charge ratio), retention time (RT), and intensity. In 
existing software tools including the current release version of ADAP, two steps constitute the peak detection process: (1) construction of extracted ion chromatograms 
(EIC) in the 2D plane of m/z and RT, and (2) detection of chromatographic peaks in the 2D plane of intensity and RT.

Detection of Peaks from EICs
Peak detection uses continuous wavelet transform (CWT), a widely used signal processing technique. A real peak in 
in an EIC should create a local maxima in the wavelet coefficients at multiple scales. The wavelet scale for which 
the wavelet most closely matches the shape of the peak, the best scale,  will create the largest coefficient. Scales 
close to the best scale should also have reasonably similar shapes to the peak and therefore create adjacent 
maxima between those scales. Ridgelines are the series of connected local maxima across scales which are indica-
tive of a real peak. The requirement that a ridgeline must exist for a peak makes CWT-based peak detection robust 
(Figure 4). Ridgelines are constructed according to the following procedure. 

(1) Begin with the coefficients corresponding to the largest wavelet scale.
(2) Find the largest coefficient at this scale and initialize a ridgeline.
(3) Remove all coefficients that are within half the estimated compact support of the Ricker wavelet (2.5 times the 
current scale).
(4) Find the next largest coefficient discounting all removed coefficients and initialize another ridgeline.
(5) Repeat steps (3)-(4) until there are no more coefficients remaining for this wavelet scale. 
(6) Move to the next scale (decrease by one) and repeat (1)-(6). Add new coefficients to an existing ridgeline if 
they are close in RT. We define close to be a difference in their indices that is less than or equal to the current 
scale being investigated. 
(7) After all scales have been processed, ridgelines must have a length, i.e., the total number of scales represented in the ridgeline, greater than or equal to 7, and not 
more than 2 gaps (missing scales) total.
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Spectral deconvolution examines all of the ions detected in 
the step of EIC peak detection, collects ions produced by the 
same analytes, and constructs the fragmentation spectrum for 
each analyte. Each constructed spectrum is expected to con-
tain ions of one single analyte because spectral deconvolution 
separates ions that are in the same raw mass spectrum but 
belong to different coeluting analytes. The constructed frag-
mentation spectra are used later to identify the analytes.

Spectral deconvolution in ADAP (Figure 6) is achieved by de-
termining the number of eluting analytes, choosing model 
peaks representing the elution profile of each analyte, and de-
composing chromatographically unresolved EIC peaks into a 
linear combination of the model peaks. To simplify and to 
speed up the deconvolution procedure in ADAP, the entire re-
tention time range is first split into a number of deconvolution 
windows. These windows are chosen so that (i) each window 
contains the entirety of EIC peaks produced by the same ana-
lyte or by coeluting analytes and (ii) each window contains a 
much smaller number of EIC peaks in comparison with the 
total number of EIC peaks in the entire data file. Subsequent 
deconvolution steps are carried out separately in each window 
so that the deconvolution algorithms are not overwhelmed 
with a large number of EIC peaks.

Deconvolution within each window starts with two sequential 
clustering phases applied to EIC peaks. The first-phase cluster-
ing is based on the proximity of peak apexes in the time 
domain, and each resulting cluster indicates the presence of at 
least one analyte. Because coeluting analytes are in close prox-
imity of each other and could fall in the same cluster, simple 
comparison of retention times cannot detect all coeluting analytes. Detection of these analytes could be achieved by using elution profiles. Toward this end, a sec-
ond-phase clustering that is based on the elution profiles of EIC peaks is carried out to group unique EIC peaks from each first-phase cluster. As a result, each first-phase 
cluster can be split into one, two, or more smaller clusters, and each resulting cluster indicates the presence of one single analyte. From each second-phase cluster, a 
model peak is selected that can best represent the elution profile of the corresponding analyte. Because an observed EIC peak can be produced by two or more coeluting 
analytes, the fragmentation spectra of the detected analytes are constructed by decomposing every observed EIC peak into a linear combination of model peaks.

Construction of EICs
Figure 2 shows the summarized workflow. Specifically, first define ε to be the mass tolerance parameter, then
(1) Take all the data points in a data file (Figure 3A), sort them by their intensities (Figure 3B), and remove those 
points (mostly noise) below a certain intensity threshold. 
(2) Starting with the most intense data point (Figure 3C), the first EIC is created (Figure 3D). 
(3) For this EIC, establish an immutable m/z range that is the data point's m/z  plus and minus ε, where ε is specified 
by the user.
(4) The next data point, which will be the next most intense, is added to an existing EIC if its m/z value falls within 
its m/z range. 
(5) If the next data point does not fall within an EICs m/z range, a new EIC is created (Figure 3E). New EICs are only 
created if the point meets the minimum start intensity requirement set by the user.
(6) An m/z range for a new EIC is created the same way as in step (3) except the boundaries will be adjusted to avoid 
overlapping with pre-existing EICs. As an example consider an existing EIC with m/z range (100.000,100.020) for ε
=0.01. If the new EIC is initialized with a data point having an m/z value of 100.025, then this new EIC will have a m/z range set to (100.020,100.035) rather than 
(100.015,100.035). 
7) Repeat steps (4)-(6) until all the data has been processed.

Software

RT for the same compound shifts from run to run and align-
ment is needed to correct the RT so that subsequent statistical 
analysis can be performed. The principle in existing alignment 
algorithms can be roughly divided into two categories. One 
category uses warping to find a nonlinear function to correct 
RT. The other category creates a reference list of peaks and 
align peaks in individual data files to the reference peak list. 
However, warping functions can only capture system-level 
variations in RT and is incapable of capturing analyte-level 
variation. Alignment algorithms that use a reference peak list 
check for proximity of peaks in terms of m/z and RT and could 
shift peaks that correspond to the same analyze differently, 
resulting in mis-alignment.

Conceptually, alignment should be formulated as a correspon-
dence problem by finding the same analyte across data files. 
The alignment algorithm in ADAP is precisely analyte-based. 
Figure on the right shows the result of aligning 15 GC-MS data 
files. Each data file is represented by one unique color. (A-C) 
Total ion chromatograms (TICs) within three different time 
intervals. (A) one component elutes with two distinct TIC 
peaks; (B) two components elute with two distinct TIC peaks; (C) two components elute with two peaks that are barely distinguishable; (D) TICs of the 15 samples. (E-G) 
EICs before alignment; (H-J) EICs after alignment. EIC pairs E-H, F-I, and G-J correspond to TIC segments (A), (B), and (C), respectively. For the two EIC pairs (F and I) 
and (G and J), two co-eluting analyses became distinguishable only after alignment. 

ADAP algorithms have 
been implemented in Java 
and incorporated into 
MZmine 2, a graphical soft-
ware framework tool that is 
used by thousands of re-
searchers around the 
world. This incorporation 
makes it possible for ADAP 
to take advantage of the 
strengths of MZmine 2. 
These strengths include: 
(1) platform independence 
due to Java technology, (2) 
modular framework, which 
simplifies incorporation of 
new algorithms, and (3) 
rich visualization capabili-
ties including display of 
spectra, chromatogram, and results from multiple preprocessing steps. 
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Figure 2:  Summarized ADAP EIC construction 
workflow diagram.

Figure 3: Illustration of the principle of ADAP EIC construction. 
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m/z vs ppm As Mass Tolerance for EIC Construction
Mass tolerance is a critical user-defined parameter in EIC construction that can have a huge impact on the con-
structed EICs and the peaks detected from them. This parameter can be specified in terms of either m/z unit or ppm. 
Due to the importance of this parameter, we investigated what unit of mass tolerance should be preferred by exam-
ining 441 high quality EIC peaks in a data file and the data points that form these EICs. It turns out that a mass 
range in m/z of 0.02 could ensure that most of the EIC peaks would include the majority of the data points forming 
each peak, whereas a mass range in ppm needs to be about 100 ppm to achieve the same goal (Figure 5). However, 
such a huge ppm value will almost certainly cause the issue of merging two or more EICs for large masses. On the 
other hand, a much smaller ppm tolerance will almost certainly cause the issue of splitting two or more EICs for 
small masses. This investigation demonstrated that a mass tolerance in m/z is more appropriate for the construction 
of EICs if one single mass tolerance is to be used for all of the m/z values in a data file.

Figure 5: Varying mass tolerance for detect-
ing EIC peaks of different m/z illustrated 
using 441 peaks in a data file.

ADAP spectral deconvolution has been developed and its performance has been evaluated using unit mass 
resolution data acquired on TOF-MS from standard-mixture and urine samples and high mass resolution 
data acquired on GC-Orbitrap from environmental pollutants samples. In addition, the identification and 
quantitation results from ADAP-GC for the unit mass resolution data were compared with those produced 
by AMDIS, AnalyzerPro, and ChromaTOF (Table to the right). ADAP-GC (both 3.0 and 3.2) and ChromaTOF 
produce similar results in terms of the number of identified compounds, their matching scores, and R2 
values, whereas AMDIS and AnalyzerPro tend to miss certain compounds. 

Figure 6: Deconvolution workflow illustrated using a data file from urine sample acquired at the unit 
mass resolution: (A) DBSCAN clustering of the apex retention times of all EIC peaks in the entire 
data file. Each color represents a cluster. (B) Hierarchical clustering of the elution profiles of EIC 
peaks in clusters i and ii in panel A. Cluster i results in one cluster and cluster ii results in two small-
er clusters. (C) Constructed fragmentation spectra (top) and in-house library spectra (bottom) ac-
quired on the same equipment as the sample.

Figure 4: Principle of CWT-based peak detection 
from EICs. (Top) Wavelet coefficients with re-
spect to wavelet scales and RT. (Bottom) The cor-
responding EIC.
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Figure 1: (A) Informatics pipeline for making sense of 
metabolomics data with data preprocessing as the 
first step of the pipeline. (B) Separate computational 
workflows for preprocessing LC-MS and GC-MS data. 


